
Using a GameEngine with GTGE
John Wagner

Introduction
This tutorial uses the Golden T Game Engine (GTGE) for Java. This excellent
and free gaming engine can be found at http://goldenstudios.or.id/

Source code for the tutorial should be included in the archive you downloaded. It
is in the file gameenginetutorial.jar.

What we’re going to learn here is how to make use of the GTGE GameEngine
class, which is essentially a game controller. You might be wondering why this
necessary, why not just use a Game class and be done with it? It’s a good
question, and it’s best answered by building a simple game and then taking it to
the next level…

The Next Big Thing
We’re writing a game called “Eraser Head” – it’s about a guy with an eraser on
his head who runs around cleaning up screens. Sounds like a big hit! Let’s get
started…

At first our vision of Eraser Head is pretty simple: a one screen game and one
character with an eraser on his head. See Figure 1 - Our Hero.

Figure 1 - Our Hero

Version 0.1
Let’s create this masterpiece by extending a Game object and implementing the
required abstract methods. Let’s also add the code to create a background and a
sprite and code to move the sprite around.

All together now:
package eraserhead;

import java.awt.*;
import java.awt.event.*;

import com.golden.gamedev.*;
import com.golden.gamedev.object.*;
import com.golden.gamedev.object.background.*;

public class EraseLevelOne extends Game
{
 private Sprite hero;
 private Background backgr;

 public static void main(String[] args)
 {

 GameLoader game = new GameLoader();
 game.setup(new EraseLevelOne(), new Dimension(640, 480), false);
 game.start();
 }

 @Override
 public void initResources()
 {
 hero = new Sprite(getImage("resources/eraserguy.png"));
 backgr = new ColorBackground(Color.WHITE, 640, 480);
 hero.setBackground(backgr);
 }

 @Override
 public void update(long elapsedTime)
 {
 backgr.update(elapsedTime);
 hero.update(elapsedTime);

 if(keyDown(KeyEvent.VK_ESCAPE))
 {
 finish();
 }

 if(keyDown(KeyEvent.VK_LEFT))
 {
 hero.setX(hero.getX()-1);
 }

 if(keyDown(KeyEvent.VK_RIGHT))
 {
 hero.setX(hero.getX()+1);
 }

 if(keyDown(KeyEvent.VK_UP))
 {
 hero.setY(hero.getY()-1);
 }

 if(keyDown(KeyEvent.VK_DOWN))
 {
 hero.setY(hero.getY()+1);
 }
 }

 @Override
 public void render(Graphics2D g)
 {
 backgr.render(g);
 hero.render(g);
 }
}

Figure 2 - Screenshot of Eraser Head in action (note to self: probably put this one on the
box)

OK, now we have a COOL game! But we need to add some features to make it
really and truly complete. Most people expect more from their games. It’s bad
enough that we aren’t writing “EraserHead 3D – The Legions of Death and
Destruction”, we’re leaving things out that people expect of their games, even in
their run-of-the-mill 2D EraserHead type games.

I mean wouldn’t it be sweet if we had a title screen where we could show a
picture of our hero, and show our copyright and title of the game? What about
instructions for playing our game?

Version 0.2
Providing for completely different modes of operation in a game like this really
has the potential to mess up your code. Your Game class not only has to
implement the details of the game, it has to keep track of what “mode” your
game is in and act accordingly.

Think of the possibilities:

• If the user uses the arrow keys while displaying the Intro screen, there is
no hero to move around. Same goes for the Help screen.

• While playing the game, you don’t want to display your Intro Screen or
help screen.

This means you’ll need special cases in your update() method and your render()
method. And when you start adding gameplay features to your game, you’ll need
to make sure you only add them in the right place.

Here is what it would look like if we did it all in our EraseLevelOne class:

package eraserhead;

import java.awt.*;
import java.awt.event.*;

import com.golden.gamedev.*;
import com.golden.gamedev.object.*;
import com.golden.gamedev.object.background.*;

public class EraseLevelOne extends Game
{
 private Sprite hero;
 private Background backgr;

 enum GameMode
 {
 INTRO, HELP, PLAY
 };

 private GameMode mode = GameMode.INTRO;

 public static void main(String[] args)
 {
 GameLoader game = new GameLoader();
 game.setup(new EraseLevelOne(), new Dimension(640, 480), false);
 game.start();
 }

 @Override
 public void initResources()
 {
 hero = new Sprite(getImage("resources/eraserguy.png"));
 backgr = new ColorBackground(Color.WHITE, 640, 480);
 hero.setBackground(backgr);
 }

 @Override
 public void update(long elapsedTime)
 {
 backgr.update(elapsedTime);

 if (mode == GameMode.PLAY)
 {
 hero.update(elapsedTime);

 if (keyDown(KeyEvent.VK_ESCAPE))
 {
 mode = GameMode.INTRO;
 }

 if (keyDown(KeyEvent.VK_LEFT))
 {
 hero.setX(hero.getX() - 1);
 }

 if (keyDown(KeyEvent.VK_RIGHT))
 {
 hero.setX(hero.getX() + 1);
 }

 if (keyDown(KeyEvent.VK_UP))
 {
 hero.setY(hero.getY() - 1);
 }

 if (keyDown(KeyEvent.VK_DOWN))
 {
 hero.setY(hero.getY() + 1);
 }
 }
 else if(mode == GameMode.HELP)
 {
 if (keyPressed(KeyEvent.VK_ESCAPE))
 {
 mode = GameMode.INTRO;
 }
 }
 else if(mode == GameMode.INTRO)
 {
 hero.setLocation(300, 100);

 if (keyPressed(KeyEvent.VK_ESCAPE))
 {
 finish();
 }

 if (keyDown(KeyEvent.VK_SPACE))
 {
 mode = GameMode.PLAY;
 }

 if (keyDown(KeyEvent.VK_F1))
 {

 mode = GameMode.HELP;
 }
 }
 }

 @Override
 public void render(Graphics2D g)
 {
 backgr.render(g);

 if(mode == GameMode.PLAY)
 {
 hero.render(g);
 }
 else if(mode == GameMode.HELP)
 {
 g.setColor(Color.BLUE);
 g.drawString("Use your arrow keys to move EraseHead around", 20, 20);
 g.drawString("Press ESC to return to main screen", 20, 50);
 }
 else if(mode == GameMode.INTRO)
 {
 g.setColor(Color.BLUE);
 g.drawString("Eraser Head - Copyright (c) Wicked Cool Games", 20, 20);
 g.drawString("Press F1 for Help", 20, 50);
 g.drawString("Press SPACE to Play", 20, 70);
 hero.render(g);
 }
 }
}

Wow, is that ugly or what? Look at that update() method! Not good and on its
way to getting worse…

Can it get worse?
Oh yes sir it can! Just think, we haven’t implemented much of the game logic yet,
bonus rounds, challenge levels, on and on and on it goes. We’ve got two
methods that implement 3 different modes of play already and that thing is
oinking!

GameEngine to the rescue
Lucky for us GTGE has a class to cure all that ails us and that class is the
GameEngine.

GameEngine extends Game and implements the initResources(), update() and
render() methods of the abstract Game class. The methods it provides do
nothing but fulfill the requirement of extending an abstract class.

Of those three abstract methods that GameEngine does implement, we might
want to override initResources() to initialize game global resources, like a score
counter, or something that needs to maintain state between all of the various
screens of a game, open a network connection, that type of thing. Such variables
would be members of your GameEngine class.

GameEngine itself is an abstract class, because it contains an abstract method
called getGame(), which accepts an int as its only argument and returns a
reference to a GameObject. So we’ll need to implement the getGame() method
in our class that extends GameEngine.

If all of the above sounds confusing don’t feel bad. Heck, I just wrote it and I’m
confused.

Maybe some code might help:

package eraserhead;

import java.awt.*;
import com.golden.gamedev.*;

public class EraseGameEngine extends GameEngine
{
 public static void main(String[] args)
 {
 GameLoader game = new GameLoader();
 game.setup(new EraseGameEngine(), new Dimension(640,480), false);
 game.start();
 }

 @Override
 public GameObject getGame(int gameID)
 {
 return null;
 }
}

Notice that the getGame() method simply returns null right now – we’re going to
fix that in a minute. First we need to set up some things so our
EraseGameEngine class can keep track of its three modes of operation.

We’ll add the following constants to our EraseGameEngine class to keep track of
our modes. Since getGame() deals with int’s that’s what we’ll have to use:

public static final int INTRO = 0;
public static final int HELP = 1;
public static final int PLAY = 2;

Let’s add a score variable. To keep things simple, we’ll make it package visible.
Ideally we would use a getter/setter.

long score = 0;

The reason for package visibility will become apparent in a moment.

Now we need to modify our getGame() method, but before we do, we have to
change our EraseLevelOne class and we also need to create classes for our
Intro screen and Help screen.

Let’s fix the EraseLevelOne class first. There are a number of changes to make.
They aren’t difficult but they need to be done in order to support the
GameEngine.

We need to extend GameObject instead of Game:

public class EraseLevelOne extends GameObject

This is because the getGame() method in GameEngine returns a GameObject,
not a Game.

Unlike Game, GameObject doesn’t have a default constructor, so we need to call
the only constructor GameObject does have. To do this, we need a default
constructor ourselves… but what would make more sense is a constructor that
accepts a GameEngine reference as its argument and passes it off to the
GameObject constructor that does the same:

public EraseLevelOne(GameEngine parent)
{
 super(parent);
}

The parent that we’re passing in is a reference to the GameEngine object that is
running the whole game. This becomes the GameObject.parent variable of the
GameObject that we extended. It’s what we can use to get at game global
variables, like the score! Consider this change to the render() method:

g.drawString("Score: " + ((EraseGameEngine) parent).score, 20, 400);

That is accessing the score variable from the parent, which is an
EraseGameEngine (point being the cast is OK). The score variable is package
visible, we’re in the same package, life is good.

The key to making this work is how you leave your GameObject and return
control to the GameEngine. When the user presses the key to quit (or something
happens in the game, like all the lives are lost, or level is solved, etc…) and you
need to move to another screen (think GameObject), you set the variable
parent.nextGameID to the ID of the next game. You then call the finish() method,
which returns control back to the parent GameEngine which then calls its refresh
() method and then calls the getGame() method to get the next GameObject. I
would draw a picture of this, but I’m really scared it might look funny. OK, I lied, I
drew a picture and it’s not so bad…

Here is a piece of code from the EraseLevelOne.update() method. If the user
presses the Escape key, the parent.nextGameID variable is set to the Intro
screen:

if (keyDown(KeyEvent.VK_ESCAPE))
{
 parent.nextGameID = EraseGameEngine.INTRO;
 finish();
}

Here is what the GameObject is saying to its parent: The next thing your going to
do is run the Intro screen because I’m FINISHED!

EraseLevelOne.java – all better now
Since we’ve moved all the “mode” type logic out of the EraseLevelOne class, I’ll
present the new simplified version here in its entirety. I’ve also removed the main
() method since we only want to start our game from the EraseGameEngine
class. Also note that I added a way to get points, pressing the Control key (this
game is gonna rock!!!!!!):

EraseLevelOne.java
package eraserhead;

import java.awt.*;
import java.awt.event.*;

import com.golden.gamedev.*;
import com.golden.gamedev.object.*;
import com.golden.gamedev.object.background.*;

public class EraseLevelOne extends GameObject
{

 private Sprite hero;
 private Background backgr;

 public EraseLevelOne(GameEngine parent)
 {
 super(parent);
 }

 @Override
 public void initResources()
 {
 hero = new Sprite(getImage("resources/eraserguy.png"));
 backgr = new ColorBackground(Color.WHITE, 640, 480);
 hero.setBackground(backgr);
 }

 @Override
 public void update(long elapsedTime)
 {
 backgr.update(elapsedTime);
 hero.update(elapsedTime);

 if (keyDown(KeyEvent.VK_ESCAPE))
 {
 parent.nextGameID = EraseGameEngine.INTRO;
 finish();
 }

 if (keyDown(KeyEvent.VK_LEFT))
 {
 hero.setX(hero.getX() - 1);
 }

 if (keyDown(KeyEvent.VK_RIGHT))
 {
 hero.setX(hero.getX() + 1);
 }

 if (keyDown(KeyEvent.VK_UP))
 {
 hero.setY(hero.getY() - 1);
 }

 if (keyDown(KeyEvent.VK_DOWN))
 {
 hero.setY(hero.getY() + 1);
 }

 if(keyDown(KeyEvent.VK_CONTROL))
 {
 ((EraseGameEngine)parent).score++;
 }
 }

 @Override
 public void render(Graphics2D g)
 {
 backgr.render(g);
 hero.render(g);
 g.setColor(Color.BLUE);
 g.drawString("Score: " + ((EraseGameEngine)parent).score, 20, 400);
 }
}

It’s worth pointing out that the new and improved EraseLevelOne class is devoid
of all Intro screen and Help screen code. All it needs to worry about now is
playing the game.

We need more objects!
The Intro screen and Help screens have now been moved to their own classes
that extend GameObject. Here is each of them.

EraseIntro.java
package eraserhead;

import java.awt.*;
import java.awt.event.*;

import com.golden.gamedev.*;
import com.golden.gamedev.object.*;
import com.golden.gamedev.object.background.*;

public class EraseIntro extends GameObject
{
 private Sprite hero;
 private Background backgr;

 public EraseIntro(GameEngine parent)
 {
 super(parent);
 }

 @Override
 public void initResources()
 {
 hero = new Sprite(getImage("resources/eraserguy.png"));
 backgr = new ColorBackground(Color.WHITE, 640, 480);
 hero.setBackground(backgr);
 }

 @Override
 public void update(long elapsedTime)
 {
 hero.setLocation(300, 100);

 if (keyPressed(KeyEvent.VK_ESCAPE))
 {
 finish();
 }

 if (keyDown(KeyEvent.VK_SPACE))
 {
 parent.nextGameID = EraseGameEngine.PLAY;
 finish();
 }

 if (keyDown(KeyEvent.VK_F1))
 {
 parent.nextGameID = EraseGameEngine.HELP;
 finish();
 }
 }

 @Override
 public void render(Graphics2D g)
 {
 backgr.render(g);

 g.setColor(Color.BLUE);
 g.drawString("Eraser Head - Copyright (c) Wicked Cool Games", 20, 20);
 g.drawString("Press F1 for Help", 20, 50);
 g.drawString("Press SPACE to Play", 20, 70);
 g.drawString("Last Score: " + ((EraseGameEngine) parent).score, 20, 400);

 hero.render(g);
 }
}

EraseHelp.java

package eraserhead;

import java.awt.*;
import java.awt.event.*;

import com.golden.gamedev.*;

public class EraseHelp extends GameObject
{
 public EraseHelp(GameEngine parent)
 {
 super(parent);
 }

 @Override
 public void initResources()
 {
 }

 @Override
 public void update(long elapsedTime)
 {

 if (keyPressed(KeyEvent.VK_ESCAPE))
 {
 parent.nextGameID = EraseGameEngine.INTRO;
 finish();
 }
 }

 @Override
 public void render(Graphics2D g)
 {
 g.setColor(Color.WHITE);
 g.fillRect(0, 0, 640, 480);

 g.setColor(Color.BLUE);
 g.drawString("Use your arrow keys to move EraseHead around", 20, 20);
 g.drawString("Press your CTRL key for points!", 20, 50);
 g.drawString("Press ESC to return to main screen", 20, 80);
 }

}

Our complete EraseGameEngine
The last piece of the puzzle we need to complete the picture is our complete
EraseGameEngine class. The interesting part is the getGame() method, which
now has three possible types of GameObject classes to choose from.

EraseGameEngine.java
package eraserhead;

import java.awt.*;
import com.golden.gamedev.*;

public class EraseGameEngine extends GameEngine
{
 public static final int INTRO = 0;
 public static final int HELP = 1;
 public static final int PLAY = 2;

 long score = 0;

 public static void main(String[] args)
 {
 GameLoader game = new GameLoader();
 game.setup(new EraseGameEngine(), new Dimension(640,480), false);
 game.start();
 }

 @Override
 public void initResources()
 {
 nextGameID = INTRO;
 }

 @Override
 public GameObject getGame(int gameID)
 {
 GameObject nextGame = null;

 switch(gameID)
 {
 case PLAY:
 score = 0;
 nextGame = new EraseLevelOne(this);
 break;

 case INTRO:
 nextGame = new EraseIntro(this);
 break;

 case HELP:
 nextGame = new EraseHelp(this);
 break;
 }

 return nextGame;
 }
}

A picture worth…

Thank you for playing along
I hope this tutorial has cleared up any questions you might have had about the
GameEngine class. It’s really a necessary class to learn if you’re going to write
something with any kind of rooms or screen switching. Even if you have only one
game play screen, you’re still going to need at least Intro screen and probably a
Help screen.

Good luck with your game programming!

Please send any corrections or comments to – john@wagner-usa.net.

The latest version of this document (and my games) can be found at
http://wagner-usa.net/lander.html

Revision history:
Version 1.0 – 8/5/2005

